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ABSTRACT

 
The problem of selecting the best linear regression 

model has long been of special interest to theoretical 

and applied statisticians. In the present study an 

attempt has been made by suggesting a diagnostic test 

for selection lo linear statistical models. The proposed 

criterion is conceptually much simpler then most of the 

existing model selection criteria, This can be readily be 

implemented using computer software and handle 

several alternative models simultaneously 

 
Keywords: 
           Diagnostic Test  , Linear Regression Models  , 
Compound Linear Models , statistical analysis. 

 
I.INTRODUCTION 
               Model selection is one of the basic problems of 
any statistical analysis. The usual setting for this 
problem is one in which a statistician has several 
possible models for data to arise from a given sampling 
study. More specifically the problem may be that of 
identifying the underlying model structure say, to 
obtain a correct model for optimization or prediction 
purposes or to estimate a set of parameters. Although 
the choice of the model(s) must take into account 
subject matter and other non-statistical aspects, data 
based statistical methods are very useful techniques in 
the selection procedure.The emphasis in statistics 
research presently has shifted from  merely estimating a 
given model to choosing among competing models.  In 
this shift, several Statisticians have made contributions 
to the selection techniques for linear statistical models. 
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The problem of selecting the best linear regression model has long been of special 

interest to theoretical and applied statisticians. In applied statistics, most research workers 

are facing with uncertainity as to the correct statistical models.  Efforts to validate model 

estimates, and subsequent model search or revision procedures are consequences of 

recognition by applied research workers that they typically deal with false models. The 

classical problem of choosing between two linear regression models was studied by Lien and 

Vuong (1987). 

In the present study an attempt has been made by proposing a simple criteria for 

choosing between two linear statistical models using studentized residuals. 

II. CRITERION FOR TESTING TWO SEPARATE LINEAR REGRESSION MODELS 

  The choice between two linear regression models is a perennial problem in statistical 

analysis. 

Consider two separate independent linear regression models under the two hypotheses as   

H1 : Y = X  + ,    ~ N (0, 
2
 In)  … (2.1) 

H2 : Y = Z  + u,   u ~ N (0, 
2
u In)  … (2.2) 

 

Where 

 Y,  and u are (nx1) vectors ; 

 X is (n x r) matrix of non-stochastic regressors with rank r; 

 Z is (n x s) matrix of non-stochastic regressors with rank S; 

  is (r x 1) vector of unknown parameters; 

  is (s x 1) vector of unknown parameters; 

 

H1 and H2  are two hypotheses, each contains regressors which can not be expressed as 

linear combinations of the regressors of other model. 

 

 By applying OLS estimation, the estimated equations are given by 

  i. 1Ŷ  = X ̂ ,   Where ̂  = (X
|
X)

|
 X

|
Y 

and   ii. 2Ŷ  = Z ̂ ,   Where ̂  = (Z
|
Z)

|
 Z

|
Y 

obtain the OLS residual vectors as  

 e1 = [ Y  X ̂ ] = [ Y  1Ŷ ] 

and  e2 = [ Y  Z ̂ ] = [ Y  2Ŷ ] 

Consider the new linear regression models,  
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(a)  Y = X  +  e2 + 1,  , 1 ~ N (0, 
2

1
 In)  … (2.3) 

and (b)  Y = Z  +  e1 + 2,  , 2 ~ N (0, 
2

2
 In)  … (2.4) 

Where, 1 and 2 are the regression coefficients of e1 and e2 respectively. Now, 

estimate these two linear regression models by using the OLS method and test for the 

statistical significance of  and  in the above models (2.3) and (2.4) by using the t-test. 

  is significant  Rejecting H1 and accepting the linear model under H2. 

is significant  Rejecting H2 and accepting the linear model under H1. 

This test can be further extended by the following procedure : 

 By introducing Quadratic and Cubic forms of residuals as additional regressors, the 

models can be written as 

(i) Y = X  + 1 
2
2e  + 2 

3
2e  + u1, u1 ~ N(0, 

2

1u
 In) … (2.5) 

and  (ii) Y = Z  + 1 
2
1e  + 2 

3
1e  + u2, u2 ~ N(0, 

2

2u
  In) … (2.6) 

We obtain the coefficients of determination R2 from the regressions (2.1), (2.2), (2.5) and 

(2.6) as 
2
I

R , 
2
IIR , 

*2
IR and 

*2
IIR  respectively. 

 

 For the selection between two linear regression models, we compute the F-statistics 

as follows : 

 

(a)   FI = 
 

  )2(1

2

*2

2*2





rnR

RR

I

II
 ~ F[2,(n-r-2)]    (2.7) 

 

(b)   FII = 

2* 2

2*

2

1 ( 2)

II II

II

R R

R n s

  

    

 ~ F[2,(n-s-2)]             (2.8) 

 

FI is significant   Rejecting H1 and accepting model under H2. 

FII is significant   Rejecting H2 and accepting model under H1. 

We regress e2 on all X – regressors and e1 on Z – regressors as follows : 

 

(i) e2 = X  + W1,  W1 ~ N (0, 
2

1w
 In)           … (2.9) 

and  (ii) e1 = Z  + W2,  W2 ~ N (0, 
2

2w
 In)  … (2.10) 
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 Now, we obtain R2 by using regressions (2.9) and (2.10) as 
**2

I
R , 

**2
IIR ; and use F-

test for their significance : 

 

 (i) 
**

IF  = 

  















rnR

rR

I

I

**2

**2

1

1
     ~    F [(r1, nr]  … (2.11) 

 

and (ii) 
**

IIF  = 

  















SnR

SR

II

II

**2

**2

1

1
     ~    F[(s1, ns]  … (2.12) 

**
IF  is significant  Rejecting H1 and accepting model under H2.  

**
IIF  is significant  Rejecting H2 and accepting model under H1. 

 

III. SELECTION CRITERION FOR CHOOSING BETWEEN TWO LINEAR STATISTICAL 

MODELS BY USING STUDENTIZED RESIDUALS  

It is very often in empirical research that the applied statistician faces the task of 

testing separate hypotheses. The poineering work on testing such hypotheses was carried 

out by Cox (1962) and his general results have been applied to various models of interest to 

statisticians. Pesaran (1974) derived statistics for testing non-nested single equation linear 

regression models; and Pesaran and Deaton (1978) obtained the corresponding expressions 

for systems of separate nonlinear regression models. 

 Consider two linear models each of which is to be estimated by the OLS method : 

M1 : Y = X  + ,    ~ N (0, 
2
 In)  … (3.1) 

M2 : Y = Z  + u,   u ~ N (0, 
2
u In)  … (3.2) 

 

Where Y ,  and u are (nx1) vectors; 

  X is (n x r) matrix with rank r; 

  Z is (n x s) matrix with rank s. 

Suppose the regressors of the Models M1 and M2 are nonstochastic. OLS estimation can be 

used to estimate the parameters of these two models. The OLS estimators of  and  are 

given by 

 

̂  = (X
|
X)

|
 X

|
Y 

and  ̂  = (Z
|
Z)

|
 Z

|
Y respectively. 

The validity of M1 could be checked by testing H0 :  = 0 in 
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Y = X  + A  +    … (3.3) 

 

Where A being (n x p) matrix of selected test variables. 

 

The relevant test statistics are under appropriate conditions, asymptotically distributed as 

2
p  , when  = 0. 

A general approach which does use information about M1 and M2 when testing either of 

them involves forming a comprehensive model 

M3 :  Y = X  +  Z ̂  + 1   … (3.4) 

  

or  Y = Z  +  X ̂  + 2   … (3.5) 

and carrying out tests of  = 0 and  = 0. 

Define the projection matrices for the two linear regression models as 

PX = [I  X (X
|
X)

|
 X

|
]    … (3.6) 

 

PZ = [I Z (Z
|
Z)

|
 Z

|
]   … (3.7) 

 

Assume that Plim 














n

ZX |

, Plim 














n

XPX Z
|

 and  

Plim 














n

ZPZ X
|

 exist and are not null matrices. 

 

We have,     PZ X ̂ = [I Z (Z
|
Z)

|
 Z

|
] X ̂  

 

    = X ̂   Z (Z
|
Z)

|
 Z

|
 X ̂  

 

   = X ̂   Z ̂ ,    

 

   = 
**

Xe  

 

Where,  ̂  = (Z
|
Z)

|
 Z

|
 (X ̂ ) 
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Here, X ̂  is regressed on Z i.e.,  

X ̂  = Z  +     … (3.8)  

 ~ N (0, 
2
 In) 

**
Xe  is the OLS residual vector from regression (3.8). 

 

Similarly, we can have, 

PX Z ̂ = [I  X (X
|
X)

|
 X

|
] Z ̂  

  = Z ̂  X (X
|
X)

|
 X

|
 Z ̂  

  = Z ̂  X̂  

= 
**

Ze         … (3.9) 

Where  ̂  = (X
|
X)

|
 X

|
 Z ̂ . 

 

Here,  Z ̂ is regressed on X.  

i.e.,   Z ̂  = X  + w, w ~N(0, 
2
w In)  … (3.10) 

 

**
Ze  is the OLS residual vector from regression….. (3.10)  

 

Define the Internally studentized residuals as 

 

iXe~  = 
 )(1ˆ

**

Xh

e

ii

iX


,    i=1, 2, …, n 

 

and  
iZe~ =  

 )(1ˆ

**

Zh

e

ii

iZ


    i=1, 2, …, n 

 

Where 
2ˆ   = 

sn

e
iX




2**

 and 
2ˆ   = 

rn

e
iZ




2**

. 

 

Here, H(X) =   )(Xh ij  and H(Z) =    )(Zh ij  are the Hat matrices of the regressions (3.8) 

and (3.10) respectively. 
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Also denote Xe~ and Ze~  are the internally studentized residual vectors. 

 

For testing the validity of two models, we consider the two linear regression models with 

artificial test variables ( Xe~  and Ze~ ) as 

 

Y = X  + Xe~  1 +           … (3.11) 

 

Y = Z  + Ze~  2 + u    … (3.12) 

 

 The validity of M1 can be tested by testing H0 : 1 = 0 

 

When the alternative is 

 H1 :  Y = X  + Xe~  1 +  

Here, the t-statistic for testing H0: 1=0 will have a central            t-distribution with (nr1) 

degrees of freedom, when the null hypothesis is true. 

 

 Similarly the validity of M2 can be tested by testing H0 : 2=0. When the alternative is  

 

 H1 : Y = Z  + Ze~  2 + u 

 Here, the t-statistic for testing H0 : 2 = 0 will have a central t-distribution with  

(n-s-1) degrees of freedom, when the null hypothesis is true  

IV. MODEL SELECTION BETWEEN TWO LINEAR STATISTICAL MODELS BY USING 

COMPOUND LINEAR STATISTICAL MODELS 

Consider two linear regression models as 

(i) MI  :  Y = X1 1 + 1     … (4.1) 

and  (ii)   MII : Y = X2 2 + 2     … (4.2) 

Where Y is (nx1) vector of observations on dependent variable;  

X1 and X2 are (nxK1) and (nxk2) data matrices of known constants respectively;  

1 and 2 are (k1x1) and (k2x1) vectors of unknown parameters respectively; 

and  1 and 2 are (nx1) vectors of disturbances. 
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 It is assumed that X1, X2 are non-stochastic; and 1 ~N (0, 
2
1  In) and 2 ~N (0, 

2
2  

In). 

 Here, 
2
1  and 

2
2  are unknown error variances. Now one can think of MI and MII as 

special cases of the linear regression model, 

 MIII : Y = X1 1 + X2 2 + , ~N (0, 2 In)   … (4.3) 

 When  2 = 0, MIII reduces to MI ; 

 and  1 = 0, MIII reduces to MII . 

 Under the proposed criterion, one can consider the following two tests : 

(a) H0 : Y = X1 1 + 1 

H1 : Y = X1 1 + X2 2 +  

 To test H0, the F – statistic is given by  

F = 

22

22
121

ˆ 

)ˆˆ( )(





k

kkn 
     … (4.4) 

 Where  
2
1̂  = 

1

1 1

1

e e

n k

 

 

2̂  = 

1e e

n k

 

, k = k1+k2 

Here,  

1

1 1
 e e  = Internally studentized Residual sum of squares obtained by estimating the model Y= 

X1 1 + 1 

1

1 1
 e e  = Internally studentized  Residual sum of squares obtained by estimating the model Y= 

X1 1 + X2 2 +  

Choose the model MI : Y = X1 1 + 1 

If  F  












)2(n )(

)k(n )1(2

211

21

kkkn

kn
      … (4.5) 
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(b) H0 : Y = X2 2 + 2 

H1 : Y = X1 1 + X2 2 +  

 To test H0, the F – statistic is given by  

 F = 
2

1

22

221

ˆ 

)ˆˆ( )(





k

kkn 
      … (4.6) 

V. CONCLUSIONS 

Choosing between two linear models is an important topic in linear regression 

analysis. The selection of the linear statistical model that is consistent with the sampling 

process whereby the data are generated, is an old and important problem in statistics. For 

the last four decades, the various criteria, search processes, empirical rules and testing 

methods have been proposed as aids in the choice process. 

          In the present study, an attempt has been made by suggesting some criteria for 

selection between two linear statistical models by using the Internally studentized 

residuals. 

The proposed criteria are conceptually much simpler than most of  the existing 

model selection criteria, can readily be implemented using  computer software and can 

handle several alternative models  simultaneously. 
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