

SCIENCE PARK

PREPARATION AND CHARACTERIZATION OF POLYANILINE /TITANIUM DIOXIDE (PANI/TiO₂) NANOCOMPOSITE VIA IN SITU POLYMERIZATION

Shanavas Khan J.¹, Asha Radhakrishnan² and Beena B.³ ^{1,3} Nanoscience Research Lab, Department of Chemistry, K.S.M.D.B. College, Sasthamkotta, Kollam, Kerala. ²Department of Chemistry, D.B.Pampa College, Parumala, Pathanamthitta, Kerala.

ABSTRACT

Crystalline titanium dioxide nanoparticle has been successfully synthesized by sol-gel method. Polyaniline (PANI) as a promising conducting polymer has been used to prepare polyaniline/ nanoTiO₂ (PANI/TiO₂) nanocomposite. Titanium dioxide (TiO₂) nanoparticles with an average crystal size of 35 nm were encapsulated by PANI via the in situ polymerization of aniline on the surface of TiO₂ nanoparticles. Characterization of PANI, TiO₂ and PANI/TiO₂, nanomaterials are carried out using various techniques such as XRD, FTIR, UV-Visible, TEM and SEM. The SEM images indicate that the TiO₂ nanoparticles were embedded in the PANI matrix. The TEM of PANI/TiO₂ also shows the encapsulation of nanoTiO₂ with in the polymer matrix. The result of spectroanalysis illustrates that polyaniline and nano-TiO₂ composite particles are not simply blended or mixed up. There is a strong interaction between polyaniline molecules and nano-TiO₂ particles.

KEYWORDS : Crystalline titanium , nanoparticles , polyaniline molecules.

1. INTRODUCTION

Organic-inorganic nanocomposites for synergetic behavior and a wide range of potential users have triggered great interest and concern of the related academic organizations and researchers over the past decade [1-4]. Specifically, nanocomposites of organic conjugated polymers and inorganic nanocrystals have attracted great attention due to a large number of potential applications such as photonics, photo electronics, and catalysis [5]. Among the conducting polymer, conducting polyaniline (PANI) is often used as an organic part to prepare nanocomposite because of its low cost, easy preparation, controllable unique properties by oxidation and protonation state, excellent environmental stability, and potential applications in electronic devices [6].

A number of metal oxide particles have so far been encapsulated into the matrix of polyaniline giving rise to a host of the nanocomposite. The CeO₂-Polyaniline (CeO₂-PANI) nanocomposites prepared via chemical oxidation of aniline by CeO₂ were reported [7]. The carbon nanotube- polyaniline core-shell nanowires by in situ inverse microemulsion has been reported. Polyaniline - BaTiO₃ nanocomposite [8], polyaniline - molybdenum [9] and polyaniline - V₂O₅ [10] were also reported. Titanium dioxide (TiO₂) due to the advantages of high chemical stability, high photocatalytic activity, relatively low cost and nontoxicity, is one of the most important photoactive reagents which is widely used for degradation of air and water organic pollutant. TiO₂ is a typical n-type semi conductor polymer and PANI is usually considered as a p-type conducting polymer [11]. Thus their combination brings a good capacitive material with good conductivity and stability [12]. There are several reports on the preparations, investigation of properties and applications of PANI/TiO₂ composite materials. Studies on the surface and interface of PANI/TiO₂ have indicated that a nanocomposite at the molecular level has been created.

Previous researchers have shown that properties of $PANI/TiO_2$ nanocomposite are quite different from pure PANI or TiO₂, which is due to the existence of a strong interaction between two components [13]. Synthesis method has a great effect on the final properties of $PANI/TiO_2$ nanocomposite. A various method such as ultrasonic irradiations, in situ polymerization, self-assembly method, graft polymerization and UV curable polymerization method have been used to prepare $PANI/TiO_2$ nanocomposite system [14, 15]. In situ polymerization of aniline in the presence of TiO_2 has been used commonly for preparation of $PANI/TiO_2$ nanocomposite (Fig.1).

Figure: 1 Schematic illustration of PANI/TiO₂ nanocomposite preparation.

In this paper, we report the preparation of PANI/TiO₂ nanocomposite via in situ polymerization method. The TiO₂ powder of particle size ≈ 35 nm was synthesized by sol-gel technique and polyaniline was synthesized by the chemical oxidative polymerization of aniline. The nanocomposite was characterized by XRD, FTIR, UV-visible, SEM and TEM. The results were compared with corresponding data of pure PANI. The intensity of diffraction peak for PANI/TiO₂ nanocomposite is lower than that for TiO₂. The characteristic FTIR peaks of pure PANI are observed to shift to a higher wave number in PANI/TiO₂ nanocomposite, which is attributed to the interaction of TiO₂ particles with molecular chains. The SEM image indicates the structure of PANI/TiO₂ nanocomposite.

2. EXPERIMENTAL

2.1 Materials

The aniline AR grade (MERCK) was distilled twice under reduced pressure. Ammonium persulphate (APS) $[(NH_4)_2S_2O_8)]$ (Analytical reagent ,RANBAXY fine chemicals Limited India), hydrochloric acid AR grade(MERCK), Titanium tetrachloride (TiCI₄) AR grade (MERCK) and Ammonium hydroxide (NH₄OH) AR grade (MERCK) were used to prepare the nanocomposite of this study. Water used in this investigation was de-ionized water.

2.2 Synthesis of TiO₂ nanoparticles

In the present study, nano TiO_2 has been prepared by sol-gel method. 100ml of high purity Titanium tetra chloride ($TiCl_4$) was carefully diluted by adding drop-wise to 250ml of ice cold, well stirred double distilled water and the resulting solution was then diluted to 500 ml. 25 ml of the above diluted $TiCl_4$ was made acidic by adding around 1 ml of con.H₂SO₄ in a beaker and diluted to 1 liter with double distilled water. Ammonium hydroxide was then added to the above solution until the p^H of the solution reached 7 to 8. The obtained Titanium hydroxide gel was then filtered washed several times with water and dried. The oven dried TiO_2 was then ground in a mortar. The fine powder obtained was then annealed for 2 hours at 300 \Box C cooled to room temperature.

2.3 Synthesis of polyaniline (PANI)

Polyaniline was synthesized by polymerization of aniline in the presence of hydrochloric acid as dopant and ammonium peroxidisulphate as an oxidant by the chemical oxidative polymerization method. For the synthesis, 50ml,1M HCI, and 2ml of aniline were added together in a 250ml beaker with constant stirring at 0°C, 4.99g of ammonium persulphate in 50ml and 1 M HCI was suddenly added into the above solution. The temperature was maintained at 0°C for 5h to complete the polymerization reaction. The precipitate obtained after the polymerization reaction was washed repeatedly with water and acetone afterward dried at 60° C for 2 h under vacuum to obtain a fine dark green powder.

2.4 Synthesis of polyaniline/Titanium dioxide nanocomposite (PANI/TiO₂)

TiO₂ nanoparticles (250mg) were dispersed in 100 ml of 1M HCI aqueous solution containing 2ml of aniline under ultrasonic vibration to reduce the aggregation of TiO₂ nanoparticles. The solution was mechanically stirred for 1h to obtain a uniform suspension containing TiO₂ particles, in an ice bath. 50 ml of a pre cooled 1M HCI containing 4.9g of ammonium persulphate was added dropwise into the solution containing aniline monomer under stirring. The mixture was allowed to polymerize under stirring for 2 h at 0°C. The precipitated dark green colored PANI-TiO₂ nanocomposite powder was filtered and washed with a large amount of deionized water, methanol and acetone. Finally, the product was dried at 80°C till the constant mass was reached.

2.5 Characterization techniques

The sample was characterized by scanning electron microscope (SEM) using Holland Philips XL30 microscope. XRD patterns of the sample were recorded in ambient air using a Holland Philips X-ray powder diffraction (Ku K α , $\lambda = 1.5406$ Ű), at scanning speed of 2°/min from 20° to 80°. UV- visible spectrum was prepared by Shimadzu analytical equipment (UV-2100). The Fourier transform infrared (FTIR) was studied by using a Bruker IR spectrometer of 4cm⁻¹ resolution in the 400-4000 cm⁻¹ range.

3. RESULT AND DISCUSSION

3.1 X-Ray Diffraction Analysis

The Figure-2 shows X-ray diffraction (XRD) pattern of HCI doped PANI, pure TiO₂ nanoparticles and PANI/TiO₂ nanocomposite. Figure-2(a) reveals that PANI also has some degree of crystallinity. A broad peak around $2\theta = 25^{\circ}$ in XRD pattern of HCI doped PANI may be attributed to the scattering from PANI chains at interplanar spacing [16]. Figure-2(b) shows the appearance of a peak in XRD pattern of pure TiO2 nanoparticles which can be indexed as the anatase polymorph of TiO₂ [17]. Also Figure-2(c) shows that there is no difference between XRD pattern of PANI/TiO₂ nanocomposite and XRD pattern of pure TiO₂ nanoparticles, which reveals deposition of PANI on the surface of TiO₂ nanoparticles which has no effect on the crystallinity of TiO₂ nanoparticles. Therefore, the polymorph of TiO₂ in the PANI/TiO₂ nanocomposite is still anatase. However, PANI peaks in the PANI/TiO₂ core-shell nanocomposite are not detected. This result suggested that the crystallization of PANI molecular chain has been hampered in the PANI/TiO₂ nanocomposite.[18]. This is because when PANI chains are adsorbed on the surface of TiO₂ nanoparticles, due to the restrictive effect of TiO₂ nanoparticles crystallinity of PANI is compromised. The crystallite size of pure TiO₂ nanoparticles and the PANI/TiO₂ nanocomposite was calculated 48 nm and 54.5 nm, respectively according to the Debye-Scherrer formula.

Figure: 2. X-ray diffractogram of (a) HCI doped PANI, (b) nano TiO₂, (c) PANI/TiO₂ nanocomposite

3.2 Furrier Transform Infrared (FTIR) analysis

Figure-3 shows the FTIR spectra of doped polyaniline, nano TiO₂ particles, and polyaniline/TiO₂ nanocomposite. The Figure-3(a) shows band at 3450 cm⁻¹ is attributable to N-H stretching mode, C=N and C=C stretching mode for the quinoid and benzenoid rings occur at 1576 and 1483 cm⁻¹. The band at about 1304 and 1242 cm⁻¹ have been attributed to C-N stretching mode for benzenoid ring, while the peak at 1127cm⁻¹ is assigned to a plane bending vibration of C-H (mode of N=Q=N, QN ⁺ H-B, and B-N ⁺-H-B), which is formed during protonation[19]. In Figure-3(b) indicate that the main characteristic bands of doped polyaniline and nano-TiO₂ all appear in FTIR spectra of polyaniline/TiO₂ nanocomposite. However, the incorporation of nano- TiO₂ particles leads to the shift of some bands of polyaniline. The bands at 1576,1483 and 1242 cm⁻¹, corresponding to the stretching mode of C=N, C=C, and C-N, all shifted to lower wavenumbers. Meanwhile, the band at 1127cm⁻¹ which is formed during protonation obviously splits. These obvious changes reveal that the bond strengths of C=N, C=C, and C-N become weaker in polyaniline/TiO₂ nanocomposite and incorporation of nano TiO₂ particles have an effect on the doping of conducting polyaniline. This means that there is a strong interaction between polyaniline macromolecules and nano- TiO_2 particles. The strong interaction may be associated with the interaction of titanic and nitrogen atom in polyaniline macromolecules. Because titanium is a transition metal, titanic has intense tendency to form coordination compounds with the nitrogen atom in polyaniline macromolecules. This interaction may weaken the bond strength of C=N, C=C, and C-N in polyaniline macromolecules. Moreover, the action of hydrogen bonding between nano-TiO₂ particles and polyaniline molecule is also contributory to the shift of bands [15, 20]. Figure-3(c) represents the pure nano TiO_2 , the band centered at 660 cm⁻¹ is assigned to the Ti-O stretching vibrations. The very weak sdsorption bands at 1620-1630 cm^{-1} is attributed to CO₂ adsorbed on the surface of the nanoparticles. The band at 3450 cm^{-1} is due to OH stretching vibrations.

Figure: 3 FTIR spectra of (a) HCI doped PANI, (b) PANI/TiO₂ nanocomposite, (c) nano TiO₂

3.3 UV-visible analysis

UV-visible spectra of HCI doped polyaniline, polyaniline/TiO₂ nanocomposite, and nano-TiO₂and are given in Figure-4. Among this Figure-4(a) shows that three distinctive peaks of doped polyaniline appear at about 365,456 and 900 nm, which are attributed to the π - π *, polaron- π * and π -polaron transition [21, 22], respectively. From Figure-4(b), it can be noted that the characteristics peaks of nano-TiO₂ and doped polyaniline all appears in PANI/TiO₂ nanocomposite, and a new peak is observed, which is at 290nm. Moreover, the peaks at 900nm are obviously shifted from 900 to 878 nm. It indicates that encapsulation of nano-TiO₂ particles has the effect on the doping of conducting polyaniline, while this effect should owe to an interaction at the interface of polyaniline and nano-TiO₂ particles. The low wavenumber region exhibits a strong vibration around 725 nm which corresponds to the antisymmetric Ti-O-Ti mode of titanium oxide, Figure-4(c).

Figure: 4. U.V-Visible spectra of (a) HCI doped PANI, (b) PANI/TiO₂ nanocomposite, (c) nanoTiO₂

3.4. Scanning Electron Microscopy (SEM) Analysis

Figure-5(a) shows the SEM image of Polyaniline (PANI), which show pseudo fiber morphology with an average diameter of 80 nm. The SEM image also confirms the porous structure of polyaniline nanofibers. Figure-5(b) shows the images of TiO₂ consist of homogeneous rod shaped nanostructures with agglomeration of nano particles are observed. Figure-5(c) shows the SEM images of PANI/TiO₂ nanocomposites. It reveals that TiO₂ nanoparticles are distributed in the polyaniline nanofiber. The size of nanocomposites from the SEM images was calculated as 94.51 nm [15, 23].

Figure: 5. The SEM images of (a) HCI doped PANI, (b) nanoTiO₂, (c) PANI/TiO₂ nanocomposite

3.5 Transmission Electron Microscopy (TEM) Analysis

Detailed information about the microstructure and morphology has been provided by TEM examination of the sample. Figure-6(a) shows the TEM image of TiO₂ it indicates the formation of nanorods and prism like structure. The crystallite size calculated from XRD results closely matches with the average particle size obtained from TEM. The fiber like PANI nanostructures are confirmed by TEM image. Figure-6(b). It is found that more than 95% of of the sample in nano fibers with diameter approximately from 20 to 80 nm. The length of the fiber range from 150 up to 500 nm. The nanofibers tend to agglomerate into interconnected nanofibers networks, rather than bundles. Figure 6(c) shows PANI/TiO₂ nanocomposite here nano TiO₂ is clearly visible in the PANI matrix [24, 25].

Figure 6 TEM images of (a) nano TiO₂, (b) polyaniline (c) polyaniline/TiO₂

4. CONCLUSION

 TiO_2 nanoparticles were successfully encapsulated by PANI via in situ chemical oxidative polymerization method. Encapsulation of TiO_2 in the matrix of PANI to form nanocomposite at the molecular level was confirmed. The result of X-ray diffraction shows that the polyaniline has no effect on the crystallization performance of nano-titanium dioxide particles. Fourier transforms infrared spectra and UV-Visible spectra indicate that polyaniline and nano-titanium dioxide particles are not simply blended or mixed up. A strong interaction exists at the interface of polyaniline macromolecules and TiO_2 nanoparticles. The strong interactive force may be attributed to the tendency to form coordination compound between titanic and nitrogen in polyaniline molecule and the action of hydrogen bonding between nano-TiO₂ particles and polyaniline molecule. SEM and TEM images of PANI/ TiO_2 nanocomposite clearly show that polyaniline deposited on the surface of the nano-TiO₂ particles.

REFERENCES

- 1. Chung C. K., Liao M W., Effect of Oxygen flow ratios and aniline temperature on Raman and photoluminescence of TiO_2 thin films deposited by magnetron sputtering thin solid film 518, 2009, 1415 1418.
- 2. Ganesan R., Gedanken A., Organic-inorganic hybrid materials based on polyaniline/TiO₂ nanocomposites for ascorbic acid fuel cell systems, Nanotechnology 19, 2008, 435709-435714.
- 3. Gue.L.,Wang.J.,Wang. X.A, Novel incorporating style of Polyaniline TiO₂ composite as effective visible photo catalyst, Journal of molecules Catalysis 357, 2012, 19-25.
- 4. Guozhong Cao, Nanostructures and nanomaterials: Synthesis, Properties and Applications, Imperial College Press, 2006
- 5. Guozhong Cao and Jeffrey Brinker C, Annual review of nano research, World scientific publishing company, USA, 2, 2011.
- 6. Hanaor D., A.H.Sorrel., Review of the Anatase to Rutile Phase Transformation , Journal of Materials science, 46, 2011, 855-874.
- 7. Hashinoto K., Irie H., Fujishima A., TiO₂, CeO₂ and PANI Photocatalysis, A Historical overview and Future Prospects, Japanese Journal of Applied Physics 44, 2005, 8269 82.
- 8. He Y, Kerl., Preparation of polyaniline/nano-BaTiO₃ composites via a novel Pickering emulsion route, Powder Technology 147, 2004, 59-63.

- 9. He Y, Zhan.K., A novel emulsion route to sub-micrometer polyaniline/nano-Md composite fibers, Appl. Surf Sci. 249, 2005, 1-6.
- 10. Jeng J., Chen T.Y., Lee C.F., Liang N.Y., Chiu W.Y., Growth mechanism and pH-regulation characteristics of composite latex particles prepared from pickering emulsion polymerization of aniline/V₂O₅ using different hydrophilicities of oil phases, Polymer 49, 2008, 3265-3271.
- 11. Karim M.R., Yeum J.H., Lee M.S., Lim K.T., Preparation of conducting polyaniline/TiO₂ composite submicron-rods by the y-radiolysis oxidative polymerization method, Reactive & Functional Polymers 68, 2008, 1371-1376.
- Konyu shrnko E.N., Stejskal J., Trechova M., Blinova M.V., Holler P., Polymerisation of aniline in ice synthesis, Material science, 158, 2008, 927-933.
- 13. Li X., Wang G., Li X., Lu D, Xhang.Z., Wue.Y., Surface properties of polyaniline/nano-TiO₂ composites, Appl. Surf. Sci. 229, 2004, 395-401.
- 14. Li X., Wang D., Cheng G., Luo Q., Wang Y., Preparation of polyaniline-modified TiO₂ nanoparticles and their photocatalytic activity under visible light illumination, Appl. Cat. B 81, 2008, 267-273.
- 15. Mac. Diarmid A. G., Epstein A. J , Polyaniline : A novel class of conducting polymer, Frarady Discuss. Chem. Soc , 88, 1989, 317-332
- 16. Murty B.S., Shankar P., Baldev Raj., Rath B.B and James Murday, Text book of Nanoscience and Nanotechnology, University Press (India) Private Limited, Hyderabad, 2012.
- 17. Gospodinova. N.L., Trlemezyan, Conducting polymer prepared by oxidation polymerization: polyaniline, Progress polymers science, 23, 1998, 1443 1484.
- 18. Xhang S.K.W., Tadokoro M., Watanabe J., Kuramoto N., Microwave absorption behaviors of polyaniline nanocomposites containing TiO₂ nanoparticles, Jor. Appl. Phys. 8, 2008, 391-394.
- 19. Radhakrishnanan S., Sijua C.R., Mahantab D., Patil S., Madras G., Conducting polyaniline-nano-TiO2 composites for smart corrosion resistant coatings, Electro Chem. Acta 54, 2009, 1249-1254.
- 20. Stejskal J., Sapurina I., Trchova M., Oxidation of aniline, Polyaniline granules, nanorods and oligomers microsphere, Macromolecules, 41, 2008, 3550-3636.
- 21. Tai H, Jiang Y, Xie G., Yu J., Chen X., Ying Z., Influence of polymerization temperature on NH₃ response of PANI/TiO₂ thin film gas sensor, Sens. Actuat. B, 129, 2008, 319 326.
- 22. Wang.X.Z., Tai H., Jiang Y., Xie G., Cham J., Fabrication and gas sensitivity of Polyaniline titanium dioxide nanocomposite thin film, Sensor and actuator, 123, 2007, 644-650.
- 23. Wilde G., Nano structured Material., Elsevier., Great Britain, Volume I, 2009.
- 24. Xua J.C., Liu W.-M., Hu-Lin Li, Titanium dioxide doped polyaniline, Mater. Sci. 25, 2005, 444-447.
- 25. Zheng J., G. Li , X. Ma, Wang Y., G. Wu, Y. Cheng, Polyaniline-TiO₂ nano-composite-based trimethylamine QCM sensor and its thermal behavior studies, Sens. Actuat. B 133, 2008, 374-380.