
 Science Park Research Journal

Primary Article

A Novel Approach for Cleanroom Software Testing

Manas Kumar Yogi

Manas Kumar Yogi

From
Sr.Assistant Professor, Computer

Science and Engineering Department
Ellenki Engineering College

Siddipet, AndhraPradesh,India

The Article Is Published On January
2014 Issue & Available At

 www.scienceparks.in

10.9780/23218045/1202013/49DOI:

ABSTRACT

The Cleanroom method of Software Engineering ensures high-quality software
with certified reliability, which is an important aspect of every software
product. The certification process needs a reasonable statistical user testing
strategy to measure the software reliability. We propose a mechanism to
reduce testing time as well as effort while performing statistical user testing so
that software quality is not diluted as well as maintaining a high degree of
software reliability. We also cover a brief history of cleanroom software
engineering approach.

Cleanroom, MTTF, User Statistical testing, Reliability,Certification.
Keywords:

1.Introduction:

1.1 Brief History:

1.2 Approach :

The Cleanroom Software Engineering process was developed by Dr.
Harlan Mills of IBM's Federal Systems division. Cleanroom Software
Engineering and some of its practices were first published in 1981, but the idea
did not really surface in major journals until 1986 .Since 1987, IBM as well as a
number of other organizations began to apply Cleanroom techniques to their
projects. Since then, the process has evolved to keep up with the changing
world of software. Design paradigms have moved from strict top-down
structured programming to include the likes of object-oriented design. Users
of this process have adapted it to coexist with various tools and techniques.

Cleanroom software engineering places importance on mathematical
verification of correctness before program implementation starts and certifies
software reliability. It was proposed in 1980's but it has not gained popularity
due to following reasons. The first reason is that this methodology is too
theoretical, too mathematical and too radical to use in real software
development. Secondly, it proposes zero units testing for developers. The last
reason is due to its rigorous nature of application in all lifecycle phases not
applicable for organizations which are operating at low level of process
maturity. These all reasons have persistent cultural resistance at its core but
still the advantages of Cleanroom software engineering are many. Cleanroom
software engineering requires a development cycle of concurrent fabrication as
well as certification of product increments that accumulate into system to be
delivered .The cleanroom process has been designed to carry out repeated
rehearsal of final measurement during software development and to modify the
development process, to get desired level of statistical quality. The purpose for
the Statistical Testing and Certification process is to demonstrate the
software's performance in a formal statistical experiment. The certification
goals are established in the Software Measurement Plan and refined in the

2321-8045

Page No-1

thVol-1, Issue-28, 30 January 2014

http://www.weeklyscience.org
http://crossref.org/
https://www.facebook.com/
https://twitter.com/

Increment Test Plan document. These goals are expressed in terms of software reliability,
growth rate, and coverage of the usage. Software undergoes its first execution in this
process. Increments are compiled, the system is built, test cases are executed, and the
tests are evaluated. Success is determined by the comparison of the software behavior
with that present in the Function Specification. Failures found during testing are
documented in the Statistical Testing Report. Values of certification measures are
compared with the certification goals and decisions are made as to the status of testing.
These decisions determine whether or not to continue testing, to stop testing for changes to
the software, or to continue on to final software certification. Evaluations and decisions
are regarding product quality and process control are documented in the Increment
Certification Report.

A pipeline of software increments is developed by small independent software teams
and as each increment is certified ,it is integrated into the whole. So, functionality of the
system grows with time. Following steps are followed:

Step 1:Increment planning.
Step 2:Information and requirements gathering.
Step 3:Box Structure specification.
Step 4:Formal Design.
Step 5:Correctness verification.
Step 6:Code generation inspection and verification.
Step 7:Statistical test Planning.
Step 8:Statistical User Testing
Step 9: Certification.

In this paper,we concentrate on the statistical use testing and propose a new model
for statistical use testing.Statistical User testing tends to test the software the way users
intend to use it and to perform this certification teams(Cleanroom testing teams) must find
a usage probability distribution for the software. The blackbox specification for each
increment of the software is analysed to define a set of stimuli that cause behavioral change
in the software. Based on interactions with prospective users, scenarios are created and a
probability of use is assigned to each stimuli. The stimulus is classified with impact on
software functionality which may increase or decrease the stability of the software.

We form the following mapping Table:

To generate a sequence of usage test cases, we use a random number generator to
obtain values between 1-99 values. Consider the following random sequences of

The Cleanroom Software Engineering strategy:

2.Proposed Model :

Table 1: Impact of user action on software functionality

Page No-2

2321-8045

A Novel Approach for Cleanroom Software Testing

thVol-1, Issue-28, 30 January 2014

Program Stimulus Level Probability Interval

Extreme 40 1-39

Moderate 40 40-79

Stable 15 80-95

Ineffectual 5 96-99

generation:

Selecting the appropriate stimuli based on the distribution interval shown above the following
impact of use cases is obtained:
Moderate- Moderate- Moderate- Stable- Ineffectual (Sequence 1)
Stable- Extreme- Extreme- Extreme- Extreme (Sequence 2)
Extreme-Stable-Extreme- Moderate- Ineffectual (Sequence 3)
Stable-Moderate-Extreme-Ineffectual-Moderate (Sequence 4)
The next step is to form the following table with count of number of occurrences of Extreme
impact with corresponding sequence in sorted order:

The next step is execution of the test cases corresponding to the Sequences according to the
rank assigned,

i.e. sequence 2,sequence 3,sequence 4,sequence 1.

The main intention to rank the sequences is to save time and effort while statistically
judging the functional behavior of the software. The MTTF (Mean Time To Failure) values are
recorded while executing the sequences. The sequences having lowest MTTF represents high
reliability for the concerned software increment. The subsequent phase of certification
includes that increment without worrying further for any types of failures.

We have presented a strategy keeping in view the testing time required to test
statistically the functional behavior of the software according to user's viewpoint. The impact
levels for stimulus are based on the specific nature of the software according to the needs of
application domain. The model is yet to be validated experimentally. As the user viewpoint of
the software behavior changes with respect to time the impact level may also change, so we
have to consider the degree of certainty while assigning the ranks.Also, we can extend the

Table 2: Usage of Test cases

Table 3: Assignment of ranks for extreme behavioral change in software
functionality

Conclusion and Future Work:

Page No-3

2321-8045 thVol-1, Issue-28, 30 January 2014

Sequence Number Random Number Sequence

1 45-71-55-86-98

2 81-31-20-27-7

3 31-87-2-44-99

4 89-55-30-96-53

Sequence Number Count of “Extreme “

occurances

Rank

2 4 1

3 2 2

4 1 3

1 0 4

A Novel Approach for Cleanroom Software Testing

proposed model with determination of MTBF (Mean Time Between Failures) instead of MTTF
values as MTBF is considered as more reliable measure than MTTF.

[1] .A. Currit, M. Dyer, and H.D. Mills, "Certifying the Reliability of Software," IEEE Trans.
Software Eng., Jan. 1986, pp. 3-1.
[2]. R.W. Selby, V.R. Basili, and F.T. Baker," Cleanroom Software Development: An Empirical
Evaluation," Tech. Report TR-1415, Computer Science Dept., Univ. of Maryland, College Park,
Md., Feb.1985.
 [3] Robert Oshana and Frank P. Clyle "Implementing cleanroom Software engineering into a
mature CMM-based software organization" Proceedings of the 1997 International Conference
on Software Engineering, Boston United States, pp: 572-573, May 1997.
[4] Richard C. Linger "Cleanroom Software engineering for zero-defect software", Proceedings
of the 15th international conference on software engineering, Baltimore, MD USA, pp: 1-13,
May 1993.
[5] Robert Oshana “Quality Software Via a Cleanroom Methodology”,
http://www.embedded.com/97/feat9609.htm
[6] Cleanroom S/W Engg. - Technology and Process by Stacy J. Prowell, Carmen J.Trammell,
Richard C. Linger, Jesse H. Poore.
[7] Cleanroom Software Engineering - Reference Model Version 1.0 by Richard C. Linger,
Carmen J. Trammell November 1996,
 http://www.sei.cmu.edu/pub/documents/96.reports/pdf/tr022.96.pdf

References:

Page No-4

2321-8045 thVol-1, Issue-28, 30 January 2014
A Novel Approach for Cleanroom Software Testing

	Page 1
	Page 2
	Page 3
	Page 4

